Intel Cilk Plus for complex parallel algorithms: "Enormous Fast Fourier Transforms" (EFFT) library
نویسندگان
چکیده
In this paper we demonstrate the methodology for parallelizing the computation of large one-dimensional discrete fast Fourier transforms (DFFTs) on multi-core Intel Xeon processors. DFFTs based on the recursive Cooley-Tukey method have to control cache utilization, memory bandwidth and vector hardware usage, and at the same time scale across multiple threads or compute nodes. Our method builds on single-threaded Intel Math Kernel Library (MKL) implementation of DFFT, and uses the Intel Cilk Plus framework for thread parallelism. We demonstrate the ability of Intel Cilk Plus to handle parallel recursion with nested loop-centric parallelism without tuning the code to the number of cores or cache metrics. The result of our work is a library called EFFT that performs 1D DFTs of size 2N for N ≥ 21 faster than the corresponding Intel MKL parallel DFT implementation by up to 1.5x, and faster than FFTW by up to 2.5x. The code of EFFT is available for free download under the GPLv3 license. This work provides a new efficient DFFT implementation, and at the same time demonstrates an educational example of how computer science problems with complex parallel patterns can be optimized for high performance using the Intel Cilk Plus framework. Table of
منابع مشابه
Performance of Parallel Bit-Reversal with Cilk and UPC for Fast Fourier Transform
Bit-reversal is widely known being an important program, as essential part of Fast Fourier Transform. If not carefully and well designed, it may easily take large portion of FFT application’s total execution time. In this paper, we present a parallel implementation of Bit-reversal for FFT using Cilk and UPC. Based on our previous work of creating parallel Bit-reversal using OpenMP in SPMD style...
متن کاملPortable high-performance programs
This dissertation discusses how to write computer programs that attain both high performance and portability, despite the fact that current computer systems have different degrees of parallelism, deep memory hierarchies, and diverse processor architectures. To cope with parallelism portably in high-performance programs, we present the Cilk multithreaded programming system. In the Cilk-5 system,...
متن کاملParallel Three-Dimensional Nonequispaced Fast Fourier Transforms and Their Application to Particle Simulation
In this paper we describe a parallel algorithm for calculating nonequispaced fast Fourier transforms on massively parallel distributed memory architectures. These algorithms are implemented in an open source software library called PNFFT. Furthermore, we derive a parallel fast algorithm for the computation of the Coulomb potentials and forces in a charged particle system, which is based on the ...
متن کاملOn task tree executor architectures based on intel parallel building blocks
Our aim was to optimize a SOA control system by evolving the architecture of the service component that transforms system models into task trees, which are then executed by the runtime library called the Task Tree Executor, TTE. In the paper we present the two novel TTE architectures that evolved from the previous TTE architecture and introduced finer grained parallelism. The novel architecture...
متن کاملA Comparison of some recent Task-based Parallel Programming Models
The need for parallel programming models that are simple to use and at the same time e cient for current ant future parallel platforms has led to recent attention to task-based models such as Cilk++, Intel TBB and the task concept in OpenMP version 3.0. The choice of model and implementation can have a major impact on the nal performance and in order to understand some of the trade-o s we have ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Parallel Computing
دوره 48 شماره
صفحات -
تاریخ انتشار 2015